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Dynamic Strength Enhancement of Conventional 
Concrete 

Hong D. Kang J, Young S. Roh2, Kaspar J. Willam 3 and Yunping Xi4 

Abstract 

In order to investigate the performance of conventional concrete at different loading rates, ex- 
perimental results of strength enhancement were obtained under tension and compression tested 
under different loading speeds. G-mix specimens prepared at the Tyndall Air Force Base were 
used to determine the range of loading rates of the servo-hydraulic equipment at hand and to 
obtain experimental results with a series of indirect tension and uniaxial compression tests. 

For interpretation of the experimental observations, a comprehensive triaxial concrete model 
was extended from rate independent elasto-plasticity to rate dependent visco-plasticity using 
the Duvaut-Lions overstress formulation. The visco-plastic concrete model was adopted to 
explore the dynamic strength enhancement in tension, compression and shear in terms of a 
single viscosity or rather relaxation time. In concrete the failure properties, i.e. the triaxial 
strength and the failure mode, depend not only on the load path, but also on the loading, rate 
especially at high speed impact. In this paper an effort was undertaken to assess the diffuse 
and localized failure modes of the triaxial concrete model and its visco-plastic extension. 

Keywords:Duvaut Lions visco-plasticity, Concrete, Rate sensitivity, Dynamic strength en- 
hancement, Regularization. 
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1    Introduction 

Mechanical loading initiates micromechanical failure of concrete materials due to interface 
debonding among the cement paste and the aggregate particles. Thereby, the heterogeneous 
constituents of materials alter material rate effects due to different mass densities. The dif- 
ferent failure mechanisms of particle interaction and the interface layers determine the surface 
roughness which may be used as a measure of fracture energy release during failure. As the 
fracture energy presumably remains constant when the surface area of fracture zone does not 
change, the strength enhancement under fast loading will be accompanied by increasing brit- 
tleness unless the fracture surface area changes. 

The experimental exploration of the dynamic strength enhancement in concrete materials is 
limited to the loading range of the servo-hydraulic MTS testing systems in the Materials Lab- 
oratory of the University of Colorado at Boulder which is capable of loading up to strain rate 

. of e = 10-1 at the fastest. Thus only a limited amount of strength enhancement is expected in 

the experimental test program. Thereby previously tested results collected by Bischoff (1988) 

and Bachmann (1993) are used to compare experimental and numerical results conducted for 

the project sponsored by AFOSR under grant F 49620-98-1-0159: 'Dynamic Performance of 
Conventional and Non-conventional Concrete'. 

To compare predictions of rate independent with rate dependent concrete behaviors under 

different loading rates, the triaxial elasto-plastic concrete formulation by Kang (1997) is adopted 

which has been implemented in the 3-D FE program FEAP5. A single eight noded brick finite 
element is used to study the difference of viscous effects in uniaxial tension, shear and uniaxial 
compression assuming uniform conditions. For shear loading, equibiaxial tension-compression 

(T-C) is applied to evaluate the dynamic strength enhancement of concrete subject to in-plane 

shearing under plane stress. A literature survey shows that the increase of strength in concrete 

materials is not very significant for loading rates up to e = 1 x 10"2 (mm/mm/sec). However, 

for loading rates higher than e = 1 x 10"1 (mm/mm/sec), especially the dynamic strength 
enhancement of tensile strength becomes very significant. 

2    Experiments 

A series of tests under splitting tension and uniaxial compression were performed on G-mix 
specimens which were prepared at the Tyndall Air Force Base. Single-sized limestone aggre- 

gates were used, the diameter of which was smaller than 1 cm (3/8 in.). The aggregates 

were retained on a # 4 (3/16 in.) sieve. Concrete was mixed with more water than the 

amount of regular concrete mix ratio to minimize air void. It is type I Portland cement, 
5Finite Element Analysis Program developed by R. Taylor and G. Simo, University of California, Berkeley 



C : S : G = 1 : 3.6 : 4.6, w/c = 1.0 by weight, and 6.1 % of type T' flyash. Three differ- 

ent G-mix specimens were provided: (a) eight 15cm x 30cm (6m x I2in) cylinders, (b) twelve 

10cm x 10cm x 20cm (4m x Ain x 8in) prisms, and (c) nine 10cm x 10cm x 10cm (4m x 4m x 4m) 

cubes. 

Axial deformation was measured by two LVDTs (Linear Variable Differential transducer) 

attached on both sides of the specimen as depicted in Figure 1. For compression testing, some 

grease was applied to the loading surface (i.e. top & bottom) to minimize friction between 

loading platen and specimen. In the case of the indirect Brazilian tension test, the test method 

described in ASTM C496 (1996) was followed for the cylindrical specimen geometry. In contrast, 

for tension testing on cubical specimen, a circular loading device (diameter, D0 = 60 mm) 

depicted in Figure 1, was used according to RILEM recommendation TC14-CPC (1994). For 

both splitting tension and compression tests, stroke control was used by maintaining constant 
stroke with various loading rates. During the test, the response behavior of vertical load vs. 
stroke was monitored and recorded by the data acquisition system. 

2.1 Compression Test 

Four cylindrical and twelve prismatic specimens were used for uniaxial compression testing. The 

moderate strain rate was e = 1 x 10~3 (mm/mm/sec) and the low strain rate was i = 1 x 10~6. 

The first cylindrical specimen (GCR1) under uniaxial compression was tested with a wrong 

parameter setup of the data acquisition system, so the compressive strength, f ofthat specimen 

underestimates the actual strength as shown in Table 1. In contrast, the compressive strength 
values obtained from the prismatic specimens were significantly higher than the ones of the 

cylindrical specimens, see Table 2. There was 40 % difference in strengths which can not be 
fully explained by shape and size of the two different geometries. As indicated in Figure 2, 

the dynamic strength enhancement of the cylindrical specimens shows about 15 % increase, 
while the strength values of the prismatic specimens exhibit slightly more enhancement. The 

stress-strain responses of the experiments are shown for various loading rates in Figures 3 (a 
and b). 

2.2 Indirect Splitting Tension Test 

Four cylindrical and nine cubical specimens were used for indirect Brazilian tension testing. 
Figure 4 exhibits the relative increase of tensile strength at different loading rates, and Fig- 

ures 5 (a and b) illustrate the nominal stress versus axial strain (i.e. stroke over the specimen 

height, D0) of cubical and cylindrical specimens, respectively. The tensile strength of G-mix 

concrete was evaluated by the standard formula in Eqn. (1) based on linear elasticity (Tim- 

oshenko and Goodier, 1970) considering the specific geometry of the cylindrical and cubical 



specimens and the maximum applied load, see also Bazant and Kazemi (1990); Carmona et al. 

(1998). It was surprising that the cylindrical specimens did yield significantly higher tensile 

strength values of // = 3.79 MPa (550 psi) at low loading rates than the cubical specimens 

at // = 2.41 MPa (350 psi), although the "dynamic" strength values did vary considerably 

from specimen to specimen, see Tables 3 and 4. For relatively small size specimens this curious 

inverse size effect of the splitting tension test was also observed by Carmona et al. (1998) such 

that a larger size of specimen exhibits a larger value of strength. In contrast the traditional 

size effect results of decreasing strength with increasing size by Bazant and Planas (1998) for 

splitting tension tests did cover a much larger range of geometry scales. The converted splitting 
tensile strength is evaluated from 

, IP 
Jucon     TrbD M 

whereby the size width of the packing strip plays an important role. We should also note 
that the radius of the steel rods underneath the loading platen leads to higher stress concen- 
tration in the cubical specimens as compared to the cylindrical one. 

3    Visco-Plasticity of Concrete 

As rate effect of concrete material is one of the main ingredients in the field of dynamic impact 
and ballistic loadings, the material characterization needs to take care of the rate-sensitive be- 
havior. Thereby visco-plasticity is a key feature to account for rate effect in cohesive-frictional 

materials. Among several rate formulations, the Perzyna-model (1966) is the most prominent 

extension of classical Bingham visco-plasticity, while the Duvaut-Lions formulation (Duvaut- 

Lions (1972); Etse and Willam (1999)) and the 'fully consistent' visco-plastic overstress formu- 

lation by Wang et al. (1997) have been recently proposed to improve the asymptotic behavior 

of visco-plastic formulations. Among these, the Duvaut-Lions linear overstress model is used 
in this study to model the results of loading rate experiments on concrete. 

3.1    Concrete Model 

The concrete failure criterion by Kang (1997) delimits the triaxial strength in stress space 

and describes the loading surface for isotropic hardening/softening in a smooth fashion. The 

curvilinear loading surface F(cr, q) = 0, which is (^-continuous except at the apex in equi- 

triaxial tension, is calibrated with the aid of conventional triaxial compression tests by Willam 

et al. (1986). The triaxial concrete formulation includes pressure sensitivity, inelastic dilatancy, 

growth of deviatoric strength, brittle-ductile transition, limitation of hardening and strain soft- 
ening in equi-triaxial compression.   The smooth cap in high triaxial compression opens up 



eventually when the hardening surface reaches the triaxial failure envelope which is fixed in 
stress space. On the tension side, the conical failure envelope collapses below the transition 
point of brittle-ductile failure in a smooth manner. The failure criterion is comprised of three 
components: 

F(£, p, 6) = F(f, p, 0)fai, + F(f, p, k(qh))hardg + F(f, p, cfo))«^ = 0 (2) 

The curvilinear shape of the failure envelope is a function of the three stress invariants 

Ii = tro-, J2 = |s:s, J3 = det(s) that are here expressed in terms of the Haigh-Westergaard 

coordinates, f = h/y/3, p = y/Th, and 9 = (1 / 3) cos-1 {(3y/3 J3) / (2 J}-5)}. The failure envelope 

fixes the triaxial strength in stress space in terms of a curvilinear triple-symmetric cone which 

is depicted in Figure 6(a) in the form of the meridional section, and in Figure 6(b), in the form 

of deviatoric tracings at different levels of hydostatic stress. The overall performance of the 
concrete model is illustrated in Figure 7 in the form of tensile and compressive meridians. The 
failure envelope is described by power function 

F(t,p,eu-^r--{—J  =0 (3) 

with the exponent, a = 0.77 which determines the shape of the curvilinear meridian somewhat 

flatter than a quadratic parabola (i.e. a = 0.5). The order of the power function and thus the 

shape of the meridian was determined by fitting and refining the failure envelope to triaxial con- 

crete test data by Launay and Gachon (1971). Details are described in Kang and Willam (1999). 

The shape of the deviatoric trace is described by the radial distance from the hydrostat 
(Willam and Warnke 1975) 

r(M  =   4(1 - e2)cos*9 + (2e - l)2 

2(1 - e2) cos 0 + (2c - 1)^/4(1 - e2) cos2 0 + 5e2 - 4e 
(4) 

The dependence of the radial distance on the third invariant 6 allows the deviatoric trace to 
expand from triangular to circular shapes with increasing hydrostatic compressive pressure as 
shown in Figure 6(b). 

3.2    Visco-plastic Extension 

Analogous to infinitesimal elasto-plasticity, the total strain rate is decomposed additively into 
an elastic and into a visco-plastic part, 

€ = ee + evp (5) 



Considering linear elasticity it follows that 

& = S:[e-evp) (6) 

In the Duvaut-Lions formulation the visco-plastic strain rate and the rate of state variables 
are defined in the form of the linear overstress model 

6 "     U~* ~vp 
T 

q   =   I[,-5] ... (7) 

whereby r designates the relaxation time, and (tr, q) stand for the 'backbone' stress and the 

set of internal state variables associated with the elasto-plastic problem. Thus, the differential 

stress-strain relationship in Eqn. (6) expands into the linear overstress format 

& = £:e- -[a - &] (8) 

3.3    Incremental Format in Constitutive Driver 

The backward Euler strategy of time integration transforms the differential equation in Eqn. 

(8) into algebraic form and advances the solution in the time step At = tn+1 - t„: 

Acrn+1 = £ : Aen+i [crn+1 - o-n+1] (9) 
T 

Tangential linearization for the iterative Newton-Raphson solution of the nonlinear Backward 
Euler equations leads to the algorithmic elastic-viscoplastic tangent operator of Duvaut-Lions, 

t DL _ do-   _ 

"'■I     ~~de [r + At" ' r + At"ep\ 
s +   At ealg 

(10) 

where the subscript t = in+1 is omitted for the sake of clarity. Note, this expression involves 

the algorithmic elasto-plastic tangent operator Ea^p
9 which determines the backbone stress &n+\. 

Moreover, the limiting condition At/r -» 0 results in instantaneous elasticity da — S : de, while 

At/r -> oo results in instantaneous elasto-plasticity da- = Sfj1 : de. ep 

In the Duvaut Lions formulation, At determines the loading rate, and the relaxation time, 
r controls the visco-plastic process and settles the stress state at t = tn+1.   As depicted in 



Figure 8, after reaching the trial stress state, ar, unlike the result of the elasto-plastic return 
process, the stress state remains somewhere between the trial and failure envelopes according 
to the values of At and r. The visco-plastic constitutive process prevents the solutions from 

localizing right away since the stress path does not follow the elasto-plastic yield constraint, 
i.e. Fn+i = 0, while elasto-plasticity yields discontinuous bifurcation near the peak strength. 

When T is very large, the stress state at t = tn+i may stay near the trial stress state, so the 

combination of At and r determines the amount of viscosity which is needed for characterizing 
the loading rate or for regularizing the constitutive formulations. 

4    Performance of Visco-plastic Concrete Model 

As experimental results of indirect tension and uniaxial compression under different loading 
rates are limited to a certain range of strain rate due to the limited number of specimens and 

the limited capacity of the testing machine, other test results by Bischoff (1988) and Bachmann 

(1993) are used in this study in order to explore the rate sensitive behavior of the specific G-mix 

• concrete. Thereby the numerical results of the Duvaut Lions concrete model are presented to 
predict the rate sensitive behavior of concrete, and to compare the results with experimental 

data. As indicated by the experimental data of Bischoff (1988) and Bachmann (1993) in Figures 

2 and 4, the strength enhancements are very different in tension and compression at strain rate 

of i = 10° to 101, while our in-house experimental results show only a moderate 15 to 20 % 
strength increase at e = 10~2. 

4.1    Strength Enhancement 

The results in Figures 9(a), 10(a), and 11(a) illustrate the dynamic strength enhancement when 

the Duvaut-Lions extension of the triaxial concrete model is subject to uniaxial tension, shear 

(T-C) and uniaxial compression at different loading rates. The tensile response in Figure 9(a) 

illustrates a modest strength enhancement with increasing strain rate c = 10_3<ol0_1. How- 

ever at e = 10° to 101 for r = 10_1 to 10-4 sec, it shows a drastic increase of 3-4 times the static 

tensile strength. The stress vs. strain response curves in Figure 9(b) demonstrate increasing 

strength and localization which appears at two slow loading rates as indicated by the symbol 

©. Thus the localization points at the end of softening in visco-plasticity, Figures 9 (e and 

f), exhibit negative eigenvalues of the localization tensor, Qvp = N ■ £$ ■ N. Thereby the 

localization diagrams in Figures 9 (e and f) plot the variation of the normalized algorithmic 

localization indicator det(Qj*)/det(QJ of the Duvaut-Lions formulation of the concrete model 

as a function of the angle of inclination 6 between the normal to the discontinuity surface with 
the axis of minor stress. Up to the localization point, the Duvaut-Lions visco-plastic extension 
of concrete material prevents loss of ellipticity of the underlying differential equations.   The 



shear (T-C) result in Figure 10(a) illustrates a similar increase of shear strength as the tension 

test, however at a lower rate of loading, c = 10"3 to 10~2 for r = 10°sec. Finally the results 

of uniaxial compression in Figures 11 (a and b) exhibit only a very modest increase of 8 % in 

compressive strength at e = 10_1 to 101 for r = 10-1 sec. Unlike tension and shear(T-C), very 

fast loading in uniaxial compression causes numerical convergence problems due to the high 
degree of nonlinearity enforcing lateral dilatation. Obviously the localization properties of uni- 

axial compression remain positive, i.e. indicating no loss of ellipticity, as this loading case does 

not trigger localization even in the rate-independent elasto-plastic case as shown in Figure 11(c). 

The strain rate at which the strength enhancement starts is controlled by At and r in the 
numerical simulation. However due to the highly nonlinear behavior of concrete materials, the 
small number of loading steps to complete the entire response behavior causes numerical insta- 

bilities during hardening and softening. Figure 11(a) indicates that the compressive strength 

starts increasing at e = 10-1, however results are only available up to e = 10° due to the numer- 
ical difficulties in obtaining the compressive response at high loading rate. As indirect tension 
generates the inelastic redistribution due to dilatancy and thus less material nonlinearities than 
uniaxial compression, results could be obtained at higher loading rates. 

4.2    Regularization 

The visco-plastic extension of the inviscid elasto-plastic model regularizes the localized solu- 
tions by preventing the underlying differential equations from loss of ellipticity. In other terms, 
regularization prevents localization of the solutions at the material level, and thus maintains 
mesh-objectivity of the softening branch. The main ingredient of visco-plastic regularization 
is the relaxation time, r that retains positive eigenvalues of the acoustic tensor, Qv as indi- 

cated in Figures 9 (c and d), 10(b), and 11(c). In other words, inclusion of viscosity prevents 

the material properties from localizing by delaying discontinuous bifurcation of the algorithmic 
tangent operator. The loss of ellipticity is induced when the linearized algebraic form turns 

zero, i.e. det(Qvp) = 0. Thus stabilization of the localization tendencies is of great importance 

in the area of numerical solution schemes, since it prevents the formation of jump conditions 
due to spatial discontinuities. 

The diagrams in Figures 9 (c and d), 10(b) and 11(c) illustrate the variation of the normal- 

ized localization tensor det(Q„p)/det(Qe) vs. the angle 6 in the Duvaut-Lions formulation of 

the concrete model. In the case of inviscid elasto-plastic materials, the underlying tangent stiff- 

ness exhibits localization in uniaxial tension and shear (T-C), but not in uniaxial compression. 

In contrast, the rate-dependent visco-plastic results in Figures 9 (c and d) and 10(b) show regu- 

larized solutions (det(Qvp) > 0) suppressing localization in tension and shear (T-C), where T-C 

denotes equibiaxial tension-compression. The figures demonstrate that the parameters r and 



At, which control the amount of inelastic degradation, result in large differences of localization 

properties along the three different load paths. In particular, Figures 9 (c and d) illustrate the 

sensitivities of the localization properties to the parameters, r and At, respectively. Figure 9(c) 

exhibits that larger values of r yield more elastic behavior, and vice versa. Figure 9(d) shows 

that smaller values of At show the same trend. Note, localization analyses in this study were 

performed at the point of elasto-plastic localization except for the results shown in Figures 9 
(e and f). 

Besides the localization properties at the material level, there is an additional issue to 

explore in the area of spatial discretization using finite elements. Due to spatial discretization 
of the continuum differential equations, mesh objective solutions are very difficult to obtain 

unless a characteristic length scale is introduced.   Several regularization techniques such as 

fracture energy method (Willam et al., 1986), strong discontinuity method (Simo et al, 1993; 

Kang and Willam, 1996) introduce mesh objective solutions in terms of nominal stress vs. 

displacement response.   In other words, regularization maintains the same fracture energy 
.dissipation of the postpeak response in spite of discretization of specimen. In physical tests, 
the fracture energy dissipation remains the same when the crack surfaces are identical.  The 

response behaviors under uniaxial tension depicted in Figure 12(a) in the form of nominal stress 

aN versus nominal strain eN, and in Figure 12(b) in the form of nominal stress aN versus 

axial displacement Az clearly illustrate the loss of mesh objectivity after localization in elasto- 
plastic solutions. However, the response behaviors of the visco-plastic material formulation in 

Figures 13 (a and b) show a systematic delay of localization. Thereby several meshes depicted 

in Figures 14(a) and 14 (b thru, d) in the form of deformed meshes were tested for the same 

purpose, and the results depicted in Figure 14(a) illustrate improved regularization when a 

finer mesh is used. In other words, localization during softening is delayed further, when the 

specimen is discretized with a finer mesh.   To trigger localization, an imperfection of 0.5 % 
reduction of the axial strength was introduced in one of the elements. An interesting aspect 

is that the four element mesh in Figures 14 (a and b) delays localization more than the serial 

mesh in Figures 13 (b and d). Therefore, it may be expected that a finer mesh than the one in 

Figure 14(d) may prevent loss of ellipticity even longer. 

5    Conclusions 

Experimental test results of G-mix concrete in uniaxial compression and indirect tension agree 

fairly well with other test results and numerical simulations (Duvaut-Lions Visco-plasticity), 

although there were limitations on the range of high loading rates. Obviously this study needs 
further extension of more tests with the appropriate number of specimens and high rate dy- 
namic impact testing. On the numerical side, different visco-plastic formulations such as the 
Perzyna-model or the 'fully consistent' overstress formulations are needed for further verifica- 



tion of rate performance of concrete materials. 

Besides the rate dependent behavior of concrete, the visco-plastic extension regularizes the 
onset of localization in the non-associated strain softening concrete model and thus delays the 
loss of ellipticity of rate-independent inviscid material descriptions. 
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GCR4 10 0.00125 4.67 _ 1.139 132.04 

Table 1: Compression Test of 6 x 12 cylinder. (GCR : G-Mix Compression test of Cylinder.) 

Specimen No. Period [sec] Strain Rate Strength [ksi] Ratio Max Load [kips] 

GCP 1 5 0.02 6.85 1.096 109.6 
GCP2 10 0.01 7.20 1.152 115.2 
GCP 3 10 0.01 6.97 1.115 111.5 
GCP 4* 100 0.001 7.98 1.277 127.7 
GCP 5 100 0.001 6.94 1.110 111.0 
GCP 6* 720 0.000139 7.53 1.205 120.5 
GCP 7 1000 0.0001 6.66 1.066 106.6 
GCP 8 10000 0.00001 5.90 0.944 94.4 
GCP 9* 10000 0.00001 5.11 0.818 81.8 
GCP 10 100000 0.000001 6.32 1.011 101.1 
GCP 11 100000 0.000001 6.25 1.0 100.0 
GCP 12* 720 0.000139 5.70 0.912 91.2 

Table 2: Compression Test of 4 x 4 x 8 prism. (GCP : G-Mix Compression test of Prism, * 

tests are not done in the same environments as others.) 
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Specimen No. Period [sec] Strain Rate Strength [ksi] Ratio Max Load [kips] 

GTR1 5 0.005 0.6 1.23 67.86 
GTR2 3 0.00833 0.59 1.21 66.68 
GTR3 7500 0.0000033 0.511 1.046 57.68 
GTR4 10000 0.0000025 0.488 1.0 55.17 

Table 3: Tension Test of 6 x 12 cylinder. (GTR : G-Mix Tension test of Cylinder.) 

Specimen No. Period [sec] Strain Rate Strength [ksi] Ratio Max Load [kips] 

GTC1 5 0.02 0.371 1.094 9.324 
GTC2 10 0.01 0.357 1.053 8.972 
GTC3 100 0.001 0.313 0.923 7.867 
GTC4 100 0.001 0.378 1.115 9.5 
GTC5 100 0.001 0.357 1.053 8.972 
GTC6 1000 0.0001 0.347 1.023 8.721 
GTC7 10000 0.00001 0.357 1.053 8.972 
GTC8 50000 0.000002 0.339 1.0 8.52 
GTC9 100000 0.000001 0.409 1.206 10.279 

Table 4: Tension Test of 4 x 4 x 4 cube. (GTC : G-Mix Tension test of Cube.) 

LVDTs 

6cm 

Grease '   Packing Strips:    ' 
(4x15 mm2) 

Figure 1: Test setup and geometry 
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Figure 2: Dynamic strength enhancement under uniaxial compression in concrete, 
comparison with other data. 
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Figure 3: Nominal stress vs. strain responses of (a) prismatic and (b) cylindrical specimens 

under uniaxial compression. 
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Figure 5: Nominal stress vs. axial strain responses of (a) cubical and (b) cylindrical 

specimens under splitting tension. 
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Failure Envelope of New Triaxial Concrete Model      Evolution of Deviatoric Section with I, 

» High Conf. Tension' 
x High Conf. Compression 
o Uniaxial Tension 
• Uniaxial Compression 
• Vertex in Equitriaxial Tens. 
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Figure 6: (a) Tensile and compressive meridians, (b) deviatoric tracings of triaxial concrete 
model. 
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Figure 7: Performance of the concrete model in the triaxial stress space. 
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— Viscoplastic Region 

Failure Envelope 

Figure 8: Viscoplastic process at the constitutive level. 

Duvaut-Llons Vlscoplastlclty (At=2x10"s) 
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Figure 9: (a) Dynamic strength enhancement, and (b) axial stress vs. strain response at 

different loading rates in uniaxial tension. 
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Figure 9: Localization Analysis for Duvaut-Lions visco-plasticity: sensitivities for regularized 

behaviors with (c) varying relaxation time, r, and (d) varying At. 
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Figure 9: Localization indicators showing negative eigenvalues at strain rate, (e) 10~4, and 

(f) 10-1. 
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Duvaut-Uons Vlscoplasticlty (At=10**, T=1.) Strain Rate: 10 
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Figure 10: (a) Dynamic strength enhancement at different loading rates in equibiaxial 

tension-compression, and (b) localization analysis for Duvaut-Lions visco-plasticity: 

sensitivity for regularized behaviors with varying relaxation time, r . 

Duvaut-Uons Vlscoplasticlty (At=l0"") Response of Uniaxial Compression in Viscoplastic Concrete 

10"*        10-        10' 
Strain Rate e 

Strain Rate=10J 

Strain Rate=10"' 
Strain Rate=3x10"' 

0.005 0.010 
Compressive Strain 

Figure 

0.015 

11: (a) Dynamic strength enhancement, and (b) axial stress vs. strain response at 
different loading rates in uniaxial compression. 
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Figure 11: (c) Localization analysis for Duvaut-Lions visco-plasticity: sensitivity with 

varying relaxation time, r . 
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Figure 12: (a) Response and (b) mesh sensitivity of one vs. four (serial) element mesh 

elasto-plastic concrete formulation under uniaxial tension. 
in 
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Responses in Viscoplastic Solutions (Duvaut Lions) Regularization in Viscoplastic Solutions 
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Figure 13: (a) Response and (b) regularized mesh sensitivity of one vs. four (serial) element 

mesh in visco-plastic concrete formulation under uniaxial tension. 

Figure 13: Deformed mesh of (c) one and (d) four (serial) element meshes. 
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Regularization in Viscoplastic Solutions 
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Figure 14: (a) Improved regularization of 4, 16 and 64 element meshes in visco-plastic 
concrete formulation under uniaxial tension. 
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Figure 14: Deformed mesh of (b) 4, (c) 16 and (d) 64 element meshes. 
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